skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Miller, Michelle"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available June 2, 2026
  2. Abstract This analysis quantifies the network dynamics, geographic concentration, and disparities in perishable food supply networks for temperature-controlled food shipments in the United States. The United States forms the core of global food systems and produces more high-quality data for network analysis than most other countries. We use the 2017 US Census Commodity Flow Survey and other publicly available data to derive empirical results from the Food Flow Model for perishable meats and perishable prepared foods. We identify the top ten counties for perishable food distribution and find that the Los Angeles and Chicago regions support the greatest volumes of perishable food movements. States that largely exist outside national perishable food networks are Arizona, Michigan, Montana, North Dakota, Texas, and West Virginia. Our analysis of US data highlights the importance of certain counties, states, and regions in perishable food networks and suggests areas where interventions could improve systems’ functions by increasing access to markets for farmers and access to food for underserved communities, especially those in rural regions. 
    more » « less
  3. What are the roles and responsibilities of U.S. academia in global fora such as the United Nations Food Systems Summit? In an effort to be better global partners, the Inter-institutional Network for Food and Agricultural Sustainability (INFAS) accepted an invitation to participate in the UNFSS. INFAS then convened a debriefing for our members to hear from our colleagues about their experiences and any outcomes that may have emerged from the Food Systems Summit. The Food Systems Summit process was deeply flawed, resulting in confusion and power inequities, yet it stimulated coalition-building and reflection on how and why to participate in global food governance. 
    more » « less
  4. Abstract The core metabolic reactions of life drive electrons through a class of redox protein enzymes, the oxidoreductases. The energetics of electron flow is determined by the redox potentials of organic and inorganic cofactors as tuned by the protein environment. Understanding how protein structure affects oxidation–reduction energetics is crucial for studying metabolism, creating bioelectronic systems, and tracing the history of biological energy utilization on Earth. We constructed ProtReDox (https://protein-redox-potential.web.app), a manually curated database of experimentally determined redox potentials. With over 500 measurements, we can begin to identify how proteins modulate oxidation–reduction energetics across the tree of life. By mapping redox potentials onto networks of oxidoreductase fold evolution, we can infer the evolution of electron transfer energetics over deep time. ProtReDox is designed to include user‐contributed submissions with the intention of making it a valuable resource for researchers in this field. 
    more » « less